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A New Approach to the Relativistic Schrödinger
Equation with Central Potential: Ansatz Method

Shi-Hai Dong1,2
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Applying an ansatz to the eigenfunction, we obtain the exact closed-form solutions
of the relativistic Schrödinger equation with the potential V(r) 5 2a/r 1 b/r1/2

both in three dimensions and in two dimensions. The restrictions on the parameters
of the given potential and the angular momentum quantum number are also
presented.

1. INTRODUCTION

The exact solutions of fundamental dynamical equations play an
important role in physics. It is possible to obtain the exact solution of the
Schrödinger equation with central physical potentials by applying an ansatz
to the eigenfunction and restricting the parameters of the given potential and
the angular momentum quantum number [6, 12–15, 22–24, 31, 34, 38, 39].
During the past several decades, much effort has gone into studying the
stationary Schrödinger equation with central potentials containing negative
powers of the radial coordinate [1–5, 7–11, 16–21, 25–30, 32, 33, 35–37].
Interest in these central physical potentials stems from the fact that the
study of the relevant Schrödinger equation provides insight into the physical
problem. Most studies have been carried out in the nonrelativistic case. The
study of the Schrödinger equation with a physical potential in the relativistic
case is beyond our scope. The purpose of this paper is to study the relativistic
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Schrödinger equation with a given potential and then generalize it to the two-
dimensional case, in accord with recent interest in lower dimensional field
theory. This study is based on our previous work [12–15].

This paper is organized as follows. In Section 2, applying an ansatz to
the eigenfunction, we obtain the solution of the relativistic Schrödinger equa-
tion with this potential in three dimensions. The two-dimensional case is
presented in Section 3. Concluding remarks are given in Section 4.

2. THREE-DIMENSIONAL CASE

Natural units " 5 c 5 1 are employed throughout this paper if not
explicitly stated otherwise. Consider the relativistic Schrödinger equation

(2 ¹2 1 M 2)c(r) 5 (E 2 V(r))2c(r) (1)

with the potential

V(r) 5 2
a
r

1
b

!r
(2)

where M and E denote the mass and energy, respectively. Let

c(r, u, w) 5 Rl(r)Ylm(u, w) (3)

where l denotes the angular momentum quantum number. On substituting
Eq. (3) into Eq. (1), we find that Rl(r) satisfies

d 2Rl(r)
dr 2 1

2
r

dRl(r)
dr

1 F(E 2 V(r))2 2 M 2 2
l(l 1 1)

r 2 GRl(r) 5 0 (4)

For the solution of Eq. (4), applying an ansatz to the radial wave function

Rl(r) 5 exp[p(r)] o
n50

anr n/21n (5)

where

p(r) 5 ar 1 2br 1/2 (6)

Substituting Eq. (5) into Eq. (4), we obtain the following recursion relation
by setting the coefficient of r n/21n21 to zero:

Anan 1 Bn11an11 1 Cn12an12 5 0 (7)

where

An 5 b2 1 b2 1 2aE 1 a(n 1 2n 1 2) (8a)

Bn 5 22ab 1 b(3/2 1 n 1 2n) (8b)
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Cn 5 a2 1 (n 1 n/2)(1 1 n 1 n/2) 2 l(l 1 1) (8c)

and

a2 5 M 2 2 E 2 (9a)

ab 5 bE (9b)

It is easy to obtain from Eq. (9a)

a 5 6!M 2 2 E 2 (10)

In order to retain the well-behaved solution at the origin and at infinity, we
choose a as

a 5 2!M 2 2 E 2 (11)

from which, together with Eq. (9b), we have

b 5 2
bE

!M 2 2 E 2
(12)

Similar to the work refs. 6, 14, and 15, if the first nonvanishing coefficient
is a0 Þ 0 in Eq. (7), we can obtain C0 5 0 from Eq. (8c), i.e.,

n6 5 2
1
2

6 !(l 1 1/2)2 2 a2 (13)

With the same reasoning, we choose n+ as a physically acceptable solution, i.e.,

n+ 5 21/2 1 j

where

j [ !(l 1 1/2)2 2 a2

Furthermore, if the pth nonvanishing coefficient ap Þ 0, but ap11 5 ap12 5
ap13 5 ??? 5 0, then it can be shown from Eq. (8a) that Ap 5 0, i.e.,

b2M 2 1 2aE(M 2 2 E 2) 5 ( p 1 2 1 2n+)(M 2 2 E 2)!M 2 2 E 2 (14)

from which we can obtain the corresponding energy eigenvalue. As we know,
An , Bn , and Cn must satisfy the determinant relation for a nontrivial solution,

det )
B0 C1 ??? ??? ??? 0
A0 B1 C2 ???
??? ??? ??? ??? ??? ???
0 0 0 0 Ap21 Bp

) 5 0 (15)

In order to appreciate this method, we present the exact solutions for
the cases p 5 0, 1 as follows.
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1. When p 5 0, we have

b2M 2 1 2aE0(M 2 2 E 2
0) 5 2(1 1 n+)(M 2 2 E 2

0)!M 2 2 E 2
0 (16)

from Eq. (14). Obviously, the E0 can be evaluated by Eq. (16) if the values
of the parameters of the potential and angular momentum quantum number
are given. Moreover, we can obtain the restriction on the parameters of the
potential and the angular momentum quantum number from Eq. (15), that
is, we can obtain B0 5 0, which, together with Eqs. (11)–(13), leads to

E0(4v+ 1 3) 1 4a!M 2 2 E 2
0 5 0 (17)

The corresponding eigenfunction for p 5 0 can now be given as

R(0)
, 5 a0r n1 expF2!M 2 2 E 2

0 r 2
2bE0

!M 2 2 E 2
0

r 1/2G (18)

where a0 is the normalization constant.
2. When p 5 1, it is found from Eq. (14) that

b2M 2 1 2aE1(M 2 2 E 2
1) 5 (3 1 2n+)(M 2 2 E 2

1)!M 2 2 E 2
1 (19)

Similarly, one can obtain the energy eigenvalue E1 from Eq. (19). The corres-
ponding restriction on the parameters of the potential and angular momentum
quantum number can also be found from Eq. (15), i.e.,

B0B1 2 A0C1 5 0 (20)

which enables us to write

b2(E1 1 4E1j 2 4ah)((3 1 4E1j 2 4ah) 2 (1 1 4j){b2M 2 2 h2[22aE1 1 (1 1 2j)h]})
4h2 5 0

(21)

where

h [ !M 2 2 E 2
1

The corresponding eigenfunction for p 5 1 can be written as

R(1)
, 5 (a0 1 a1r 1/2)r n1 expF2!M 2 2 E 2

1 r 2
2bE1

!M 2 2 E 2
1

r 1/2G (22)

where ai (i 5 0, 1) can be evaluated by the normalization condition.
Following in this way, we can generate a class of exact solutions by

setting p 5 1, 2, . . . . Generally, if the pth nonvanishing coefficient is ap Þ
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0, but ap11 5 ap12 5 ??? 5 0, then we can obtain the energy eigenvalue Ep

from Eq. (14). The corresponding eigenfunction is

R(p)
, 5 (a0 1 a1r 1/2 1 ??? 1 apr p/2)r n1 expF2!M 2 2 E 2

pr 2
2bEp

!M 2 2 E 2
p

r 1/2G
(23)

where ai (i 5 1, 2, . . . , p) can be expressed by Eq. (7) and in principle
obtained by the normalization condition.

3. TWO-DIMENSIONAL CASE

Let us now turn to the two-dimensional relativistic Schrödinger equation.
In this case, we can take the wave function as

c(r, w) 5 Rm(r)e6imw, m 5 0, 1, 2, . . . (24)

from which we obtain

d 2Rm(r)
dr 2 1

1
r

dRm(r)
dr

1 F(E 2 V(r))2 2 M 2 2
m2 2 1/4

r 2 GRm(r) 5 0 (25)

where M, m, and E denote the mass, angular momentum quantum number,
and energy, respectively. For the solution of Eq. (25), similarly, we apply the
following ansatz to the radial wave function Rm(r):

Rm(r) 5 exp[p(r)] o
n50

anr n/21n (26)

where

p(r) 5 a1r 1 2b1r 1/2 (27)

Substituting Eq. (26) into Eq. (25), we obtain the following recursion relation:

Anan 1 Bn11an11 1 Cn12an12 5 0 (28)

where

An 5 b2
1 1 b2 1 2aE 1 a1(n 1 2n 1 1) (29a)

Bn 5 22ab 1 b1(1/2 1 n 1 2n) (29b)

Cn 5 a2 1 (n 1 n/2)(n 1 n/2) 2 (m2 2 1/4) (29c)

and

a2
1 5 M 2 2 E 2 (30a)

a1b1 5 bE (30b)
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Similarly, the physically acceptable solutions a1 and b1 can be obtained from
Eq. (30),

a1 5 2!M 2 2 E 2 (31)

b1 5 2
bE

!M 2 2 E 2
(32)

Furthermore, if the first nonvanishing coefficient is a0 Þ 0 in Eq. (28), we
then obtain C0 5 0 from Eq. (29c), i.e.,

n6 5 6!m2 2 a2 2 1/4 (33)

Likewise, we choose n+ as a physically acceptable solution. If the pth nonvan-
ishing coefficient is ap Þ 0, but ap11 5 ap12 5 ap13 5 ??? 5 0, then Ap 5
0, from Eq. (29a), i.e.,

b2M 2 1 2aE(M 2 2 E 2) 5 ( p 1 1 1 2n+)(M 2 2 E 2)!M 2 2 E 2 (34)

from which we can obtain the energy eigenvalue. Certainly, An , Bn , and Cn

must also satisfy Eq. (15) for a nontrivial solution. The exact solutions of
the different cases p 5 0, 1 are given below to demonstrate the method.

1. When p 5 0, we have

b2M 2 1 2aE0(M 2 2 E 2
0) 5 (2n+ 1 1)(M 2 2 E 2

0)!M 2 2 E 2
0 (35)

from Eq. (34). Clearly, the E0 can be evaluated from Eq. (35) if the values
of the parameters and angular momentum quantum number are given. In
addition, the restriction on the parameters of the potential and the angular
momentum quantum number can be obtained from Eq. (15), namely, we can
obtain B0 5 0, which, together with Eqs. (31)–(32), leads to

E0(1 1 4v+) 5 4a!M 2 2 E 2
0 (36)

The corresponding eigenfunction for p 5 0 can now be written as

R(0)
m 5 a0r n1 expF2!M 2 2 E 2

0r 2
2bE0

!M 2 2 E 2
0

r 1/2G (37)

where a0 is the normalization constant.
2. When p 5 1, it can be shown from Eq. (34) that

b2M 2 1 2aE1(M 2 2 E 2
1) 5 2(1 1 n+)(M 2 2 E 2

1)!M 2 2 E 2
1 (38)

from which we can obtain the energy eigenvalue. The corresponding restric-
tion can also be obtained from Eq. (15), i.e.,

B0B1 2 A0C1 5 0 (39)

which leads to
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12ab 2
b(1/2 1 2n+)E1

h 212ab 2
b(3/2 1 2n+)E1

h 2
5

(1 1 4n+){b2 M 2 2 h2[22aE1 1 (1 1 2n+)h]}
4h2 (40)

where n+ is given in Eq. (33) and h is also defined above. The corresponding
eigenfunction for p 5 1 is

R(1)
m 5 (a0 1 a1r 1/2)r n1 expF2!M 2 2 E 2

1r 2
2bE1

!M 2 2 E 2
1

r 1/2G (41)

where ai (i 5 0, 1) can be evaluated by the normalization condition.
Similar to the three-dimensional case, we can generate a class of exact

solutions by setting p 5 1, 2, . . . , Generally, if the pth nonvanishing coeffi-
cient is ap Þ 0, but ap11 5 ap12 5 ??? 5 0, then we can obtain the energy
eigenvalue from Eq. (34). The corresponding eigenfunction can be written as

R(p)
m 5 (a0 1 a1r 1/2 1 ??? 1 apr p/2)r n1 expF2!M 2 2 E 2

pr 2
2bEp

!M 2 2 E 2
p

r 1/2G
(42)

where ai (i 5 1, 2, . . . , p) can be expressed by Eq. (28) and be obtained by
the normalization condition.

4. CONCLUDING REMARKS

In this paper, applying an ansatz to the eigenfunction, we first obtained
the solutions of the relativistic Schrödinger equation with the given potential
in three dimensions. Due to wide interest in lower dimensional field theory, we
then generalized this problem to the two-dimensional case. The corresponding
restrictions on the parameters of the given potential and the angular momen-
tum quantum number were presented. Study of the relativistic Schrödinger
equation with other central potentials is in progress.
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